WE CAN
DO SO
MUCH
TOGETHER

VIRTUAL UPSCALING

Annual meeting 20/12/2017

Miguel Seco Calleja Haritz Vallejo Artola

Parque Tecnológico de San Sebastián Mikeletegi Pasealekua, 7 E-20009 Donostia-San Sebastián - Gipuzkoa www.tecnalia.com

Index

- Introduction
- Objectives
- Simulation procedure and tool
- Conclusions
- Activities for 2018

INTRODUCTION

Two case studies

- planned within WP3
- to extract requirements for the generic virtual upscaling tools developed in WP4

Task 3.2

- the second case study
- related to Wire and Arc Additive Manufacturing (WAAM)
- conducted by Tecnalia

What's a WAAM process? Main advantage: high deposition rate Main drawback: lower geometry complexity Welding gun Electrode Shielding gas Molten metal -Weld path Weld pool Weld filler **Building direction** Substrate

- WAAM relatively new fabrication technique
- Great potential due to benefits such as material efficiency, lead time, cost, etc.
- However, specific problems
 - distortions
 - residual stresses
 - pores
 - cracks
 - etc.

PROCESS SIMULATION BECOMES CRITICAL

- How to achieve a computationally efficient simulation?
 - 1. Reduced model complexity

2. Alternative approaches

Combination of the Finite
Difference and the Finite
Element methods

Efficient 2D models

OBJECTIVES

Objectives

- Development and validation of a simulation procedure able to efficiently simulate WAAM processes
- Implementation of a simulation procedure
- Assess the accuracy of the numerical results and the reduction of computational cost, compared with current FEA
- Extract requirements for the Modelling Factory with this development

SIMULATION PROCEDURE AND TOOL

- Based on the combination of the Finite Difference and Finite Element methods
 - FDM is usually more efficient than FEM, as good thermal results can be quickly achieved with simpler mathematical models (less DOF)
 - but requires a deeper knowledge of the phenomenon to be modelled
- This procedure is considered to be more efficient than a common fully-coupled transient thermo-mechanical analysis because:
 - being a <u>weak coupled analysis</u>, the simulation cost will be considerably reduced without any significant loss in accuracy
 - a <u>coarser mathematical model</u> can be used thanks to the Finite Difference Method, while keeping results accuracy
 - a greater time step can be applied for the mechanical analysis

Simulation steps

- Several codes used for the resolution of the problem, but the simulation tool operates as a unique piece of software
 - each software is sequentially executed through a batch file
 - the information is exchanged through the communication channels
- The user is able to complete the calculation by just executing this batch file

```
1 @echo off
 3 cls
   start /wait %1convert.exe
   start /wait %1solve.exe
 6 start /wait %1output.exe
   cd "C:\USUARIOS CALC\HARITZ\PROYECTOS\2017 VIRTUAL UPSCALING\03 programa\04 ejecutable programa"
   C:\MSC.Software\Marc\2014.1.0\marc2014.1\tools\run_marc -jid NewInput|more
10 del centroids.dat
11 del newinput.dat
12 del nodal temperatures.dat.dat
13 del output.dat
14 del output memoria.dat
   del temperatures.dat
16 del *.log
   del *.sts
   del *.out
    del fort.*
    del *.*.$$$
   exit
```


CONCLUSIONS

Conclusions

- Development of a novel simulation procedure to efficiently simulate WAAM processes
- A simulation tool, consisting of a pre-processor, a solver and a post-processor, that follows this simulation procedure is presented.
 - arrangement of a simulation tool package to subsequently solve the thermal and the mechanical analyses
 - such a solver operates as a unique piece of software
- The communication among the codes and modules is completed by means of input/output files, in which the data is organized through specific cards

ACTIVITIES FOR 2018

Task 3.2

Status

Objective	Progress	Corresponding deliverable	Date	Progress
Development of a simulation procedure able to efficiently simulate WAAM processes	100%	D3.2.1 Description of the thermo-mechanical model and consequent efficiency	M4, Dec. 2017	100%
Development of a simulation tool that follows this procedure	100%			
Assess the accuracy of the numerical results and the reduction of computational cost	50%	D3.2.2 Validation against current approaches	M5, June 2018	50%
Validation of the simulation procedure/tool	30%			
Extract requirements for the Modelling Factory with this development	0%	D3.2.3 Documentation of the procedure over the multi-scale modelling chain	M5, June 2018	0%

Miguel Seco Calleja

miguel.seco@tecnalia.com

Haritz Vallejo Artola

haritz.vallejo@tecnalia.com

Parque Tecnológico de San Sebastián Mikeletegi Pasealekua, 7 E-20009 Donostia-San Sebastián - Gipuzkoa

Visit our blog: http://blogs.tecnalia.com/inspiring-blog/

www.tecnalia.com